Finding Local Maximum and Minimum Values of a Function - Relative Extrema

Просмотров: 1, 305, 425   |   Загружено: 7 год.
icon
The Organic Chemistry Tutor
icon
12, 974
icon
Скачать
iconПодробнее о видео
This calculus video tutorial explains how to find the local maximum and minimum values of a function. In order to determine the relative extrema, you need to find the first derivative, set it equal to zero, and solve for x which represents the critical numbers of the function. You need to put these numbers on a number line and create a sign chart. According to the first derivative test, if the sign changes from - to +, it's a relative maximum. If it changes from + to -, it's a relative minimum. This video contains plenty of examples and practice problems for you to work on.

Derivative Applications - Free Formula Sheet:


____________________________
Introduction to Limits:


Derivatives - Fast Review:


Introduction to Related Rates:


_____________________________
Extreme Value Theorem:


Finding Critical Numbers:


Local Maximum & Minimum:


Absolute Extrema:


Rolle's Theorem:


________________________________
Mean Value Theorem:


Increasing and Decreasing Functions:


First Derivative Test:


Concavity & Inflection Points:


Second Derivative Test:


_________________________________
L'Hopital's Rule:


Curve Sketching With Derivatives:


Newton's Method:


Optimization Problems:


_______________________________________
Final Exams and Video Playlists:


Full-Length Videos and Worksheets:

Похожие видео

Добавлено: 55 год.
Добавил:
  © 2019-2021
  Finding Local Maximum and Minimum Values of a Function - Relative Extrema - RusLar.Me