This equation will change how you see the world (the logistic map)

  • Видео
  • О видео
  • Скачать
  • Поделиться

This equation will change how you see the world (the logistic map)

The logistic map connects fluid convection, neuron firing, the Mandelbrot set and so much more. Fasthosts Techie Test competition is now closed! Learn more about Fasthosts here: https://www.fasthosts.co.uk/veritasium Code for interactives is available below... Animations, coding, interactives in this video by Jonny Hyman 🙌 Try the code yourself: https://github.com/jonnyhyman/Chaos References: James Gleick, Chaos Steven Strogatz, Nonlinear Dynamics and Chaos May, R. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976). https://doi.org/10.1038/261459a0 Robert Shaw, The Dripping Faucet as a Model Chaotic System https://archive.org/details/ShawRobertDrippingFaucetAsAModelChaoticSystem1984_201811/mode/2up Crevier DW, Meister M. Synchronous period-doubling in flicker vision of salamander and man. J Neurophysiol. 1998 Apr;79(4):1869-78. Bing Jia, Huaguang Gu, Li Li, Xiaoyan Zhao. Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns Cogn Neurodyn (2012) 6:89–106 DOI 10.1007/s11571-011-9184-7 A Garfinkel, ML Spano, WL Ditto, JN Weiss. Controlling cardiac chaos Science 28 Aug 1992: Vol. 257, Issue 5074, pp. 1230-1235 DOI: 10.1126/science.1519060 R. M. May, D. M. G. Wishart, J. Bray and R. L. Smith Chaos and the Dynamics of Biological Populations Source: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 413, No. 1844, Dynamical Chaos (Sep. 8, 1987), pp. 27-44 Chialvo, D., Gilmour Jr, R. & Jalife, J. Low dimensional chaos in cardiac tissue. Nature 343, 653–657 (1990). https://doi.org/10.1038/343653a0 Xujun Ye, Kenshi Sakai. A new modified resource budget model for nonlinear dynamics in citrus production. Chaos, Solitons and Fractals 87 (2016) 51–60 Libchaber, A. & Laroche, C. & Fauve, Stephan. (1982). Period doubling cascade in mercury, a quantitative measurement. http://dx.doi.org/10.1051/jphyslet:01982004307021100. 43. 10.1051/jphyslet:01982004307021100. Special thanks to Patreon Supporters: Alfred Wallace, Arjun Chakroborty, Bryan Baker, DALE HORNE, Donal Botkin, halyoav, James Knight, Jasper Xin, Joar Wandborg, Lee Redden, Lyvann Ferrusca, Michael Krugman, Pindex, Ron Neal, Sam Lutfi, Tige Thorman, Vincent Special thanks to: Henry Reich for feedback on earlier versions of this video Raquel Nuno for enduring many earlier iterations (including parts she filmed that were replaced) Dianna Cowern for title suggestions and saying earlier versions weren't good Heather Zinn Brooks for feedback on an earlier version. Music from: https://epidemicsound.com 'What We Discovered' 'A Sound Foundation 1' 'Seaweed' 'Colored Spirals 4' https://ve42.co/Artlist 'Busy World' 'Children of Mystery'
16, 591, 121   |   5 год. назад  |   602, 136 - 0
 

This equation will change how you see the world (the logistic map)

Скачайте изображение (превью) выбрав качество


320x180 480x360 640x480 1280x720

The logistic map connects fluid convection, neuron firing, the Mandelbrot set and so much more. Fasthosts Techie Test competition is now closed! Learn more about Fasthosts here: Code for interactives is available below...

Animations, coding, interactives in this video by Jonny Hyman 🙌
Try the code yourself:

References:
James Gleick, Chaos
Steven Strogatz, Nonlinear Dynamics and Chaos

May, R. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976).

Robert Shaw, The Dripping Faucet as a Model Chaotic System


Crevier DW, Meister M. Synchronous period-doubling in flicker vision of salamander and man.
J Neurophysiol. 1998 Apr;79(4):1869-78.

Bing Jia, Huaguang Gu, Li Li, Xiaoyan Zhao. Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns Cogn Neurodyn (2012) 6:89–106 DOI 10.1007/s11571-011-9184-7

A Garfinkel, ML Spano, WL Ditto, JN Weiss. Controlling cardiac chaos
Science 28 Aug 1992: Vol. 257, Issue 5074, pp. 1230-1235 DOI: 10.1126/science.1519060

R. M. May, D. M. G. Wishart, J. Bray and R. L. Smith Chaos and the Dynamics of Biological Populations
Source: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 413, No. 1844, Dynamical Chaos (Sep. 8, 1987), pp. 27-44

Chialvo, D., Gilmour Jr, R. & Jalife, J. Low dimensional chaos in cardiac tissue. Nature 343, 653–657 (1990).

Xujun Ye, Kenshi Sakai. A new modified resource budget model for nonlinear dynamics in citrus production. Chaos, Solitons and Fractals 87 (2016) 51–60

Libchaber, A. & Laroche, C. & Fauve, Stephan. (1982). Period doubling cascade in mercury, a quantitative measurement. . 43. 10.1051/jphyslet:01982004307021100.

Special thanks to Patreon Supporters:
Alfred Wallace, Arjun Chakroborty, Bryan Baker, DALE HORNE, Donal Botkin, halyoav, James Knight, Jasper Xin, Joar Wandborg, Lee Redden, Lyvann Ferrusca, Michael Krugman, Pindex, Ron Neal, Sam Lutfi, Tige Thorman, Vincent

Special thanks to:
Henry Reich for feedback on earlier versions of this video
Raquel Nuno for enduring many earlier iterations (including parts she filmed that were replaced)
Dianna Cowern for title suggestions and saying earlier versions weren't good
Heather Zinn Brooks for feedback on an earlier version.


Music from:
"What We Discovered" "A Sound Foundation 1" "Seaweed" "Colored Spirals 4"

"Busy World" "Children of Mystery"


This equation will change how you see the world (the logistic map)

Чтобы скачать видео "This equation will change how you see the world (the logistic map)" передвинте ползунок вправо



Покажите вашим друзьям, добавьте в соцсети

Ссылка на страницу с видео:

 

Ссылка HTML на страницу с видео:

 

Код для вставки плеера:


  • Комментарии

Комментарии ФБ


Уважаемые друзья!

Источником всего видеоконтента, в том числе проигрывающегося на страницах ресурса ruslar.me, является сторонний видео ресурс, а именно общедоступный видеохостинг YouTube.com, предоставляющий открытый доступ к своему видеоконтенту (используя открытую и общедоступную технологию video API3 youtube.com)!

Проблемы с авторскими правами

Если вам принадлежат авторские права на данное видео, которое было загружено без вашего согласия на YouTube.com, перейдите на страницу этого видео сайта YouTube.com , нажмите на ссылку под проигрывателем Ещё -> "Пожаловаться" -> "Нарушение моих прав" и в выпадающем меню, выбирите, что именно нарушается и нажмите кнопку "Отправить".



Неприемлемый контент

Чтобы сообщить о неприемлемом видео, перейдите на YouTube, нажмите на ссылку под проигрывателем Ещё -> "Пожаловаться" и выберите в "Сообщить о нарушении" что именно вас не устраивает в этом видео. Подробнее о наших правилах читайте в Условиях использования.